Contrôle (Durée: 1h00)

Il est nécessaire de fournir des réponses complètes, rédigés de façon claire et ordonnée.

• Q.1 Montrer que $G = \mathbb{R}_+^* \times \mathbb{R}$ est un groupe pour la loi * suivante

$$(a,b)*(c,d) = (ac,ad+b).$$

- **Q.2** Soit (G,\cdot) un groupe et $a \in G$. Montrer que $H_a = \{x \in G, xa = ax\}$ est un sous-groupe de G.
- Q.3 Soit $f:(G_1,\cdot)\to (G_2,*)$ un morphisme de groupes et H_2 un sous-groupe de $(G_2,*)$.

 Montrer que l'image réciproque $f^{-1}(H_2)$ est un sous-groupe de (G_1,\cdot) .
- Q.4 Décomposer la permutation σ en produit de cycles disjoints et en produit de transpositions

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 4 & 3 & 8 & 7 & 10 & 1 & 2 & 5 & 6 \end{pmatrix}$$

Donner sa signature $\varepsilon(\sigma)$.

- **Q.5** Soit $\{I_i\}_{i=1..n}$ une famille d'idéaux d'un anneau A, montrer que $\bigcap_{i=1}^n I_i$ est un idéal de A.
- **Q.6** Soit $(A, +, \cdot)$ un anneau. On considère l'application $\varphi : A \to A, x \mapsto x^2$.
 - a) Montrer que si φ est un morphisme d'anneaux, alors

$$\forall x \in A, \quad x^2 = -x^2.$$

b) Montrer que si en plus φ est surjectif, alors

$$\forall a \in A, a = -a,$$

- c) Montrer que l'anneau A est commutatif.
- Q.7 a) Compléter la définition d'un corps suivante :

"Un corps est un anneau commutatif $(K, +, \cdot)$ dont".

b) Soit $(K, +, \cdot)$ un corps, montrer que $1_K \neq 0_K$ et que K est un anneau intègre.

(Rappel: un anneau intègre est un anneau commutatif qui n'a pas de diviseurs de 0).